ETHIRAJ COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF MICROBIOLOGY M.Sc., APPLIED MICROBIOLOGY SYLLABUS TO BE EFFECTIVE FROM (2015 – 2016)

ETHIRAJ COLLEGE FOR WOMEN PG DEPARTMENT OF APPLIED MICROBIOLOGY Revised Syllabus of June 2015

The Post Graduate Department of Microbiology is revising syllabus with effect from the academic year 2015-2016. PG Degree has two academic years. Every academic year is divided into two semester sessions. Each semester will have a minimum of 90 working days and each day will have 5 working hours. Teaching is organized into a modular pattern of credit courses. Credit is normally related to the number of hours a teacher teaches a particular subject. It is also related to the number of hours a student spends learning a subject or carrying out an activity.

PREAMBLE

PG Department of Microbiology submits changes and additions suggested in the curricula that are given in the ensuing pages.

- Practical Examination to be held at the end of every year.
- Modification of Course content in all Courses.
- Shifting of Courses as per the need.
- Addition of Core Elective papers.

REGULATIONS

1. ELIGIBILITY FOR ADMISSION:

Candidates for admission to the first year of the Degree of M.Sc., Applied Microbiology course shall be required to have passed the B.Sc., degree examinations in Microbiology /Zoology /Botany under the University of Madras or as equivalent thereto by the Syndicate of the University of Madras.

2. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the Degree only if he/she has undergone the prescribed course of study for a period of not less than two academic years, passed the examination of all Four Semesters prescribed.

3. COURSE OF STUDY:

The Main subjects of study for Post graduate Degree shall consist of the following:

5	
PART-I	: Core Theory and Core Practical
PART-II	: Major and Non Major Electives
PART- III	: Soft Skill
PART- IV	: Internship

4. PASSING MINIMUM:

A candidate shall be declared to have passed in each paper / practical of the main subject of study wherever prescribed, if she secured NOT LESS THAN 50% of the marks prescribed for the end semester examination.

5. CLASSIFICATION OF SUCCESSFUL CANDIDATES:

Part I, II

Successful candidates passing the examination and securing the marks (i) 60 percent and above and (ii) 50 percent in the aggregate shall be declared to have passed the examination in the FIRST and SECOND class respectively. Candidates who pass all the examinations (Part I, II) prescribed for the course in the FIRST APPEARANCE ITSELF ALONE are eligible for ranking.

	Course Code	Course Title	Hrs/	Credits	CA	End Sem	Total
			Wk		Marks	Marks	
		SEMESTEI	RI	•			
CORE I	16SP15/1C/GMY	General	5	4	40	60	100
		Microbiology					
CORE II	16SP15/1C/MPY	Microbial	5	4	40	60	100
		Physiology					
CORE III	16SP15/1C/VLY	Virology	4	4	40	60	100
CORE	16SP15/1E1/MYP	Mycology and	4	3	40	60	100
ELECTIVE I		Parasitology					
SOFT SKILL	PG15/1S/PEW	Personality	2	2	-	50	50
		Enrichment for					
		Women					
CORE	16SP15/2C/PR1	General	5	-	-	-	-
PRACTICAL I		Microbiology and					
		Microbial					
		Physiology					
CORE	16SP15/2C/PR2	Medical	5	-	-	-	-
PRACTICAL II		Microbiology					
		SEMESTE	1				1.0.0
CORE IV	16SP15/2C/FDY	Food and Dairy	4	4	40	60	100
CODELL		Microbiology			40		100
CORE V	16SP15/2C/BLY	Bacteriology	4	4	40	60	100
CORE VI	16SP15/2C/DGM	Diagnostic	4	4	40	60	100
CORE	16SP15/2E2/BRM	Microbiology Biostatistics and	3	3	40	60	100
ELECTIVE II	105P15/2E2/BRIVI	Research	3	3	40	00	100
ELECTIVE II		Methodology					
NON MAJOR	16SP15/2E/VMC	Vermicomposting	4	3	40	60	100
ELECTIVE I	1051 15/2L/ VIVIC	and Mushroom	-	5	40	00	100
LLLCIIVLI		Cultivation					
SOFT SKILL	PG15/2S/LCE	*Languages-	2	2	_	50	50
SOI I SILLE	PG15/2S/FRE	English or French	-	-		50	50
CORE	16SP15/2C/PR1	General	4	4	40	60	100
PRACTICAL I		Microbiology and					
		Microbial					
		Physiology					
CORE	16SP15/2C/PR2	Medical	5	4	40	60	100
PRACTICAL I1		Microbiology					

COURSE PROFILE

Total Credits of I and II Semester = 45 *Communication Skills in English/French for Beginners

	Course Code	Course Title	Hrs/	Credits	CA	End Sem	Total		
			Wk		Marks	Marks			
	SEMESTER III								
CORE VI	16SP15/3C/ILY	Immunology	4	4	40	60	100		
CORE VII	16SP15/3C/EMY	Environmental Microbiology	4	4	40	60	100		
CORE Elective III	16SP15/3E3/IMY	Industrial Microbiology	4	3	40	60	100		
NON MAJOR ELECTIVE II	16SP15/3E/GLP	Gardening and Landscaping	4	3	40	60	100		
SOFT SKILL	16SP15/3S/CSC	Computing Skills for competitive examinations	2	2	-	50	50		
CORE PRACTICAL III	16SP15/4C/PR3	Immunology and Molecular Biology	4	-	-	-	-		
CORE PRACTICAL IV	16SP15/4C/PR4	Environmental Microbiology	4	-	-	-	-		
CORE PRACTICAL V	16SP15/4C/PR5	Food and Industrial Microbiology	4	-	-	-	-		
INTERNSHIP		**		2					
		SEMESTER	R IV						
CORE VIII	16SP15/4C/MBY	Molecular Biology and Recombinant DNA Technology	4	4	40	60	100		
CORE IX	16SP15/4C/PRO	Project	5	4	40	60	100		
CORE ELECTIVE IV	16SP15/4E4/MIG	Microbial Genetics	4	3	40	60	100		
CORE ELECTIVE V	16SP15/4E5/BIF	Bioinformatics	3	3	40	60	100		
SOFT SKILL	16SP15/4S/EEP	Essentials of Entrepreneurship	2	2	-	50	50		
CORE PRACTICAL III	16SP15/4C/PR3	Immunology and Molecular Biology	4	4	40	60	100		
CORE PRACTICAL IV	16SP15/4C/PR4	Environmental Microbiology	4	4	40	60	100		
CORE PRACTICAL V	16SP15/4C/PR5	Food and Industrial Microbiology	4	4	40	60	100		

**Internship will be carried out during summer vacation of the II semester Total credits of III and IV semester=46 Total credits=91

TEMPLATE FOR EVALUATION PATTERN CONTINUOUS ASSESSMENT – THEORY (CORE AND ELECTIVE)

Semester	Course Code	Course Title	Continuous Assessment				
			Test I	Test II	Quiz/ Assignment/ Seminar/ Field Visit	Participatory Learning	Total
			10	10	10	10	40
Ι	16SP15/1C/GMY	General Microbiology	10	10	10	10	40
	16SP15/1C/MPY	Microbial Physiology	10	10	10	10	40
	16SP15/1C/VLY	Virology	10	10	10	10	40
	16SP15/1E1/MYP	Mycology and Parasitology	10	10	10	10	40
II	16SP15/2C/FDY	Food and Dairy Microbiology	10	10	10	10	40
	16SP15/2C/BLY	Bacteriology	10	10	10	10	40
	16SP15/2C/DGM	Diagnostic Microbiology	10	10	10	10	40
	16SP15/2E2/BRM	Biostatistics and Research Methodology	10	10	10	10	40
III	16SP15/3C/ILY	Immunology	10	10	10	10	40
	16SP15/3C/EMY	Environmental Microbiology	10	10	10	10	40
	16SP15/3E3/IMY	Industrial Microbiology	10	10	10	10	40
	16SP15/3E/GLP	Gardening and Landscaping	10	10	10	10	40
IV	16SP15/4C/MBY	Molecular Biology and Recombinant DNA Technology	10	10	10	10	40
	16SP15/4E4/MIG	Microbial Genetics	10	10	10	10	40
	16SP15/4E5/BIF	Bioinformatics	10	10	10	10	40

RUBRICS FOR CONTINUOUS ASSESSMENT EVALUATION

Assignment -	Appearance /Content/Originality/Presentation/Schematic
	Representation and Diagram/Bibliography
Seminar -	Organization /Subject Knowledge/Visual Aids/Confidence
	Level/ Presentation
Participatory Learning -	Answering Questions/Clearing Doubts/ Participation in
	Discussion/Attendance/Communication and Language
Field Trip -	Participation/Preparation/Report/Attitude/Leadership

ASSESSMENT OF PRACTICAL COURSES

TYPE OF VALUATION	VALUATION PATTERN	MARKS
	I Model Test (50 marks converted to 10 Marks)	10
CONTINUOUS ASSESSMENT	II Model Test (50 marks converted to 10 Marks)	10
	Maintenance of Observation Book	10
	Participatory Learning	10
END SEMESTER	End Semester Examination	60
EXAMINATION		
	Total	100

ASSESSMENT OF PROJECT

VALUATION PATTERN	MARKS	TYPE OF ASSESSMENT
Choice of subject and Review of Literature	10	Continuous assessment
Organization and Interpretation	10	
Project Internal Presentation	20	
Dissertation(Internal and External)	40	End Semester Examination
Viva- Voce (Internal and External)	20	
Total	100	

STRUCTURE OF SOFT SKILL PAPERS

SEMESTER	CODE	COURSE TITLE	PAGE NO.
Ι	PG15/1S/PEW	Personality Enrichment For Women	-
II	PG15/2S/LCE PG15/2S/FRE	Languages- English or French	-
III	16SP15/3S/CSC	Computing Skills for Competitive Examinations	37
IV	16SP15/4S/EEP	Essentials of Entrepreneurship	48

SEMESTER I GENERAL MICROBIOLOGY

TEACHING HOURS: 75 COURSECODE: 16SP15/1C/GMY

OBJECTIVES:

To enable students to

- Learn about Cultivation and Characterization of Microbes
- Classification and Identification of Microorganisms

COURSE CONTENT

UNIT I

History of Microbiology – Evolution of Microbiology with its recent developments. Classification of Microorganisms- Haeckel's Three Kingdom concept, Whittaker's Five Kingdom concept, Eight Kingdom concept. Principles of Classification – Phenetic and Phylogenetic Classification. Numerical Taxonomy.

UNIT II

Microscopy – Principle, Working and Application – Simple, Compound, Bright field, Dark field, Phase contrast, Fluorescence Microscopy and Confocal Microscopy, Transmission and Scanning Electron microscopy – Specimen preparation.

UNIT III

Prokaryotic cell structure – Cell Wall, Membrane, Capsule, Flagella, Inclusion Bodies and Spores. Outlines of Eukaryotic cell structure and differences between prokaryotic and eukaryotic cell. Staining – Simple staining, Grams staining, Acid-fast staining, Metachromatic granule staining, Nuclear staining, Capsule staining, Flagella staining and Spore staining.

UNIT IV

Types of culture media and its applications. Decimal dilution. Pure Culture Techniques – Pour plate, Spread plate, Streaking and Stabbing. Preservation of microbial cultures. Chemotherapeutic agents–Classification and mechanism of action. Drug resistance.

UNIT V

Sterilization - Physical and Chemical Methods- High temperature – Moist heat and dry heat, Radiation and Filtration. Disinfection methods - Phenol and Phenolic compounds, Alcohols, Halogens, Heavy metals, Dyes, Detergents, Quaternary Ammonium compounds, Aldehydes and Gaseous agents. Quality control of Sterilization methods.

15 Hours

15 Hours

CREDITS: 4 L T P· 4 1 0

L T P: 410

15 Hours

15 Hours

15 Hours

RECOMMENDED TEXT BOOKS:

- 1. Michael.J. Pelczar., E.C.S. Chan and Noel. R. Krieg. (2007) <u>Microbiology</u>. 7th edn. Mc Graw Hill, New York.
- 2. Prescott. L.M., Harley. J.P., Klein. D.A. (2013). <u>Microbiology</u> 9th edn. Wm. C. Brown publishers, Dubugue.
- 3. Tortora, G.J., Funke, B.R., Case, C.L. (2013). <u>Microbiology</u>. An Introduction 11th A La Carte Pearson.

REFERENCE BOOKS:

- 1. Davis. B.D., Delbecco. R., Eisen. H.N and Ginsburg. H.S. (1990). <u>Microbiology.</u> 5th edn. Harper and Row, New York.
- Roger. Y. Stanier., John. L. Ingraham., Mark. L. Wheeles and Page.R. Painter. (1987) <u>General Microbiology.</u> 5th edn. Englewood cliffs, New Jersey, U.S.A.
- 3. Madigan, M.T., Martinko, J.M. and Parker, J. (1999). <u>Brock's Biology of Microorganisms.</u> 9th Edn. Prentice Hall, New Jersey.
- 4. Salle. A.J (1992). <u>Fundamental Principles of Bacteriology</u>. 7th edn. McGraw Hill Inc. New York.
- 5. Boyd, R.F. (1998). <u>General Microbiology.</u> Times Mirror, Mosby College Publishing, St Louis.

WEB RESOURCES

- 1.http://www.microbiologyonline.org/
- 2. http://microbes.org/
- 3.http://www.microbes.info/resources/generalmicrobiology/
- 4.<u>http://www.simhg.org/microbiology/</u>
- 5.<u>www.brookscole.com/microbio/</u>

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER I MICROBIAL PHYSIOLOGY

TEACHING HOURS: 75 COURSE CODE: 16SP15/1C/MPY

OBJECTIVE:

To enable students to

• Learn about bacterial nutrition and their utilization.

COURSE CONTENT

UNIT I

Nutrition – Nutritional requirements and types in bacteria – Phototrophs, Chemotrophs, Autotrophs and Heterotrophs. Nutrient transport mechanisms- Passive diffusion, Facilitated diffusion, Active transport, Group translocation and Specific transport system.

UNIT II

Microbial growth – Growth curve and Measurement of Growth – Cell Number and Cell Mass and metabolic activity. Batch, Continuous, Synchronous and Asynchronous cultures, Factors affecting growth.

UNIT III

Enzymes - properties, functions and regulation. Basic concepts of metabolism, Oxidation reduction reactions, Energy generation by anaerobic metabolism - Glycolysis, Pentose Phosphate pathway, ED pathway, Fermentation. Energy generation by Aerobic metabolism -TCA cycle, Glycoxylate pathway and Electron Transport chain, Mechanism of ATP synthesis - Chemiosmosis, Pasteur effect. Metabolism of lipids-β oxidation.

UNIT IV

Anaerobic Respiration - Nitrogen, Sulphur, Iron and Hydrogen Oxidation. Methanogenesis. Biosynthesis - Gluconeogenesis, Peptidoglycan synthesis, Amino acids, Purines, Pyrimidines and Fattyacids.

UNIT V

Photosynthesis - process, antenna of light-harvesting pigments, Photochemical reaction centers, Photosynthetic Electron Transport Chain-Cyclic and Non-cyclic. Oxygenic and Anoxygenic Photosynthesis. Calvin-Benson cycle. Bioluminescence - Process and application.

10 Hours

20 Hours

15 Hours

15 Hours

CREDITS: 4

LTP:410

15 Hours

RECOMMENDED TEXT BOOKS:

- 1.Stanier R.Y., Ingraham, J.L. Wheelis, M.L and Painter, P.R. (2010). General Microbiology. 5th edn. Macmilan education Ltd. London.
- 2.Prescott. L.M., Harley. J.P., Klein. D.A. (1993). <u>Microbiology</u>. 2nd edn. Wm. C. Brown publishers, Dubugue.
- 3. Moat, A.G. and Foster, J.W. (2003). <u>Microbial Physiology.</u> 4th Edn. John Wiley and Sons, New York.

REFERENCE BOOKS:

- 1.Salle. A.J. (1992). Fundamental Principles of Bacteriology. 7th edn. McGraw Hill Inc. New York.
- 2.Madigan, M.T., Martinko, J.M., & Parker ,J. (2000). <u>Brock Biology of Microorganisms</u>. 9th edn. Prentice Hall International, Inc, London.
- 3. Ingraham, J.L., & Ingraham, C.A. (2000). <u>Introduction to Microbiology</u>. 2nd edn. Brook / Cole. Singapore.
- 4. Gottschalk, G. (1986). Bacterial Metabolism. 2nd Edn. Springer-Verlag, New York.
- 5. Rose, A.H. (1976). An Introduction to Microbial Physiology. 3rd Edn.Plenum, New York.

WEB RESOURCES

- 1.<u>http://www.microbiologyonline.org/</u>
- 2. http://www.accessexcellence.org/rc/microbiology
- 3.<u>www.oxfordreference.com</u>
- 4.www.ncbi.nlm.nih.gov/
- 5.https://en.m.wikipedia.org

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) 5 x 8 marks = 40 marks

SEMESTER I VIROLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/1C/VLY

OBJECTIVES:

To enable students to

- Understand the basics of Virology
- To impart the knowledge regarding the diagnostics, clinical aspects and related implications of human viral disease and emerging viral infections.

COURSE CONTENT

UNIT I

Brief outline of Virology - General properties of viruses- Morphology, Replication and Cultivation of Viruses – Inoculation in Animals, Embryonated Eggs, Tissue Culture - Estimation of yields, methods for purification of Viruses. Viriods, Prions, Satellite RNAs and virusoids. Classification of Viruses- animal (Dimmock, 2011) and Plant Viruses (Gibbs, 1969).

UNIT II

Viral diseases of Humans – Morphology, Classification, Pathogenesis, Diagnosis, Prevention and Treatment of Herpes (Herpes Simplex virus, Varicella – Zoster virus, Cytomegalo virus and Epstein Barr virus) Hepatitis, Pox – (Vaccinia and Variola, Molluscum contagiosum) Rhabdo, Orthomyxo, Paramyxo (Respiratory syncytial virus, Mumps virus, Measles virus) Entero – Coxsackie virus and Polio virus, HIV and Tumour viruses - DNA, RNA virus and Oncogenes. Emerging viral infections.

UNIT III

Arthropod borne Viral Diseases - Toga and Flavi encephalitis, Mosquito borne encephalitis, Tick borne encephalitis, Venezuelan equine encephalitis, Bunya virus encephalitis, West Nile Yellow fever, Dengue and Sand fly fever. Study of Plant Virus –Tobacco Mosaic Virus. Viruses of Algae and Fungi.

UNIT IV

Bacterial Viruses – Structural Organization, Life Cycle, Transcription, Replication, Lytic and Lysogenic Cycle of - ϕ X174, M13, MU, T4, Lambda. Phage Typing and its Application in Bacterial

Genetics.

UNIT V

Interferons, Viral Vaccines – Conventional Vaccines- Killed and Attenuated, Modern Vaccines-recombinant, subunit, DNA, Peptide Vaccines. HIV Vaccines, Other Vaccines and Anti-viral Drugs. Guidelines for GCP. Diagnosis of Viral infections.

15 Hours

10 Hours

10 Hours

10 Hours

15 Hours incephalitis,

CREDITS: 4 L T P: 3 1 0

RECOMMENDED TEXT BOOKS:

- 1. Jawetz, E., Melnic, J.L. and Adelberg, E.A. (2000). Review of Medical Microbiology. 19th edn. Lange Medical Publications, U.S.A.
- 2. Timbury, M.C. (1986). <u>Medical Virology.</u> 9th edn. Churchill Livingstone, London.
- 3. Topley and Wilson. (1995). <u>Principles of Bacteriology, Virology and Immunity.</u> 9th edn. Edward Arnold, London.

REFERENCE BOOKS:

- 1.Dimmok N. J. and Primrose S. B. (1994). <u>Introduction to Modern Virology</u>. 6th edn. Blackwell Scientific Publishers.
- 2.Enquist., Krug., Recaniello and Skalka. (2000). <u>Principles of Virology, Molecular</u> <u>Biology, Pathogenesis and control.</u>
- 3.Morag C. and Timbury M.C. (1994). <u>Medical Virology</u>. 4th edn. Blackwell Scientific Publishers.
- 4.Conrat H.F., Kimball P.C. and Levy J.A. (1994). <u>Virology.</u> 3rd edn. Prentice Hall, Englewood Cliff, New Jersey.
- 5. Luria, S.E., Darnel, J.E., Jr., Baltimore, D. and Campbell, A. (1978). <u>General Virology.</u> 3rd Edn. John Wiley & Sons, New York

WEB RESOURCES

- 1.http://www.virology-education.com/
- 2. http://www.clinical virology.org/

3.<u>http://www.virology.net/</u>

- 4.<u>http://www.microbiologybook.org/mhunt/intro-vir.htm</u>
- 5.http://www.vaccineinformation.org/

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER I MYCOLOGY AND PARASITOLOGY (For Our Department Students)

TEACHING HOURS: 60 COURSE CODE: 16SP15/1E1/MYP

OBJECTIVES:

To enable students to

- Understand the basic structure, classification and medical importance of fungi and parasites.
- Study the diagnostic approaches and advanced techniques in Mycology and Parasitology.

COURSE CONTENT

UNIT I

Introduction to Mycology and Parasitology – Classification of Medically important Fungi. (Chander J, 2009).Morphology, and Reproduction, Culture media and Preservation of Cultures. Types of Parasites and Hosts, Basic classification of medically important Parasites (Chatterjee, 2009). Morphology and cultivation.

UNIT II

Clinical features, Pathogenesis, lab diagnosis, treatment of Superficial fungi- Malassezia furfur, Piedraria hortae and Trichosporon beigeli. Clinical types of dermatophytoses and pathogenesis. Fungi causing Mycetoma. Systemic fungi- Histoplasma capsulatum, Blastomyces dermatitids, Coccidioides immitis, Paracoccidiodes brasiliensis.

UNIT III

Clinical features, Pathogenesis, lab diagnosis and treatment of Fungi implicated in Opportunistic infections- *Candida albicans, Cryptococcus neoformans, Pneumocystis carinii. Pencillium*, *Aspergillus, Rhizopus and Mucor.*

UNIT IV

Protozology – Sarcodines - Entamoeba histolytica, Intestinal Flagellates-Giardia,. Haemoflagellates- Leishmania donovani, Trypanosoma cruzi and brucei, Apicomplexa -Plasmodium, Toxoplasma. Helminthology- Tapeworms- Taenia, Echinococcus; Flukes-Schistosoma, Roundworms – Ascaris. Hookworms-Ancylostoma Tissue nematodes-Wuchereria.

UNIT V

Laboratory diagnosis of Fungal and Parasitic infections. Clinical specimens, Collection and Transport, Recovery by Cultural, Immunological and Molecular methods. Therapeutics, Chemoprophylaxis, Immunoprophylaxis.

10 Hours

10 Hours

20 Hours

10 Hours

CREDITS: 3 L T P: 3 1 0

10 Hours

RECOMMENDED TEXT BOOKS

- 1.Fisher, F. and Cook, N.B. (1998). Fundamentals of Diagnostic Mycology. W.B. Saunders Company, Pennsylavania.
- 2.Chander, J. (2009). <u>A Text book of Medical Mycology.</u> 3rd edn. Mehta publishers.
- 3. Chatterjee (2009). Medical Parasitology. CBS Publishers, New Delhi.

REFERENCE BOOKS

- 1. Parija S. C. (1996). <u>Text Book of Medical Parasitology</u>. Orient Longman.
- 2. Levanthal, R. and Cheadle, R.S. (2012). <u>Medical Parasitology</u>. 6th edn. S.A.Davies Co., Philadelphia.
- 3. Walter Beck, J. and Davies, J.E. (1976). <u>Medical Parasitology</u>. 2nd edn. C.V.Mosby Company, St. Louis.
- 4. Alexopolus, C.J. and Mims, C.W. (1995). <u>Introductory Mycology.</u> 4th edn .John Wiley and Sons, New York.
- 5. P.L.Choidini ,A.H.Moody, D.W.Manser.(2001). <u>Atlas of Medical Helminthology and</u> <u>Parasitology.</u> Churchill living stone.

WEB RESOURCES

- 1. www.mycologypathfinder.weebly.com
- 2. www.dmoz.org/desc/science/biology/mycology
- 3. http://nt.ars-grin.gov/sbmlweb/fungi/index.cfm/
- 4. <u>www.parasitology.com/</u>
- 5. <u>www.parasite-diagnosis.ch/</u>

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER II FOOD AND DAIRY MICROBIOLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/2C/FDY

OBJECTIVES:

This paper focuses on

- Microbiology of food and techniques in food processing.
- Application of microorganisms for food production.

COURSE CONTENT

UNIT I

Introduction to Food Microbiology - Factors (Extrinsic and Intrinsic) affecting Microbial Growth in food. Microorganisms in Food - Bacteria and Fungi. Determination of Microorganisms in food. Principles of Preservation - Asepsis, High Temperature, Low Temperature, Drying and Food Additives.

UNIT II

Microorganisms in Foods and methods for detection: Fresh meat, Processed meat, poultry, Fish and sea foods- Culture, Microscopic, and Sampling Method for detecting microbes, Physical, Chemical methods, Whole animal assays, Immunological methods. Food packaging materials, properties and benefits. Biosensors in food.

UNIT III

Food Borne Infections and Food Poisoning - *Bacillus, Clostridium, Escherichia, Salmonella, Shigella, Staphylococcus, Vibrio,* Nematodes, Protozoa, Algae, Fungi and Viruses. Food borne outbreaks in India.

UNIT IV

Microbiology of Milk-Microbes in Milk, Milk borne Infections. Fermentation of Milk-Souring, Lactic Acid Fermentation, Colour and flavours, Gassy fermentation and proteolysis. Quality Control Tests – Phosphatase, Resazurin and Reductase Tests. Microbiology of Fermented Milk products - Production of Cheese, Yogurt, Buttermilk, Kumis, Kefir, Acidophilus milk and Probiotics.

UNIT V

Good Hygiene Practices, Sanitation in manufacture and retail trade; Food control agencies and their regulations, Hazard analysis and critical control points (HACCP); GMP, Plant sanitationemployees' health standard, waste treatment, disposal, quality control. Bureau of Indian standards. Food laws and standards in India (FSS). Recent trends and development in food technologies in India.

10 Hours

15 Hours

10 Hours

10 Hours

15 Hours

CREDITS: 4 LTP: 3 1 0

RECOMMENDED TEXT BOOKS

- 1. Frazier, W.C., & Westhoff, D.C. (1987). <u>Food Microbiology</u>. 4thedn. Tata McGraw Hill. Publishing Company Ltd. New York.
- 2. Jay M.Jay.(1998). <u>Modern Food Microbiology</u>. CBS Publishers and Distributors, New York.
- 3. Richard K. Robinson. (2002). <u>Dairy Microbiology Handbook: The Microbiology of Milk</u> <u>and Milk Products.</u> 3rd Edition.

REFERENCES

- 1. Adams M.R, and Moss M.D. (2006). <u>Food Microbiology</u>. New Age International Pvt Ltd., Publishers.
- 2. Banwarst. G.J. (1979). Basic Food Microbiology. CBS Publishers and distributors.
- 3. Robinson R. K. (2002). Dairy Microbiology. Elseiver Applied Science, London.
- 4. Hobbs, B.C. and Roberts, D. (1993). Food Poisoning and Food Hygiene. Edward Arnold. London
- 5. Vijaya R K. (2007). Food Microbiology. MJP Publishers. Chennai.

WEBSITES

- 1. <u>http://www.fda.gov/food/food safety.html</u>
- 2. <u>www.microbiology procedure.com</u>
- 3. <u>https://www.uoguelph.ca/foodscience/book-page/dairy-microbiology</u>
- 4. <u>www.wiley.com</u>
- 5. <u>www.journals.elsevier.com/food-microbiology</u>

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER II BACTERIOLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/2C/BLY

OBJECTIVES:

This paper focuses on

- Understanding the mechanisms of bacterial infections
- Knowledge to prevent and manage the infections

COURSE CONTENT

UNIT I

General Bacteriology - Normal Microbial Flora of Human Body, Classification of bacteria (Bergy's) and virulence factors involved in pathogenesis.

UNIT II

Gram Positive Bacteria - Morphology, Classification, Cultural Characteristics, Pathogenicity, Lab Diagnosis, Prevention and Control of Infections caused by *Staphylococcus aureus and* Coagulase Negative *Staphylococci* implicated in Hospital acquired infections, *Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Corynebacterium diphtheriae, Mycobacterium tuberculosis, Mycobacterium leprae,* MAIS complex and *Clostridium.*

UNIT III

Gram Negative Bacteria - Morphology, Classification, Cultural Characteristics, Pathogenicity, Lab Diagnosis, Prevention and Control of Infections caused by *Escherichia coli, Klebsiella, Proteus, Salmonella, Shigella, Vibrio cholerae, Pseudomonas, Haemophilus influenzae, Bordetella, Neisseria.*

UNIT IV

Spiral Forms and Non-cultivable Bacteria - Morphology, Classification, Pathogenicity, Lab Diagnosis, Prevention and Control of Infections caused by *Helicobacter pylori, Spirochaetes – Treponema pallidum, Leptospira, Borrelia. Mycoplasma. Rickettsiae and Chlamydia trachomatis.*

UNIT V

Zoonotic Bacterial Infections – Morphology, Classification, Pathogenicity, Lab Diagnosis, Prevention and Control of Infections caused by *Bacillus, Yersinia, Brucella*. Prevention and control.

CREDITS: 4 LT P: 310

10 Hours

15 Hours

15 Hours

10 Hours

10 Hours

RECOMMENDED TEXT BOOKS

- 1. Greenwood, D., Slack, R.B., & Peutherer, J.F. (2002). <u>Medical Microbiology</u>. 16th edn. Churchill Livingston London.
- 2. Jawetz, E., Melnic, J.L. and Adelberg, E.A.(1997). <u>Review of Medical Microbiology</u>. 9th edn. Lange Medical Publications, U.S.A.
- 3. Ananthanarayanan, R, & Panicker, C.K.J. (2013). <u>Textbook of Microbiology</u>. 9th edition. Orient Longman.

REFERENCES

- 1. Topley and Wilson's. (1998). <u>Principles of Bacteriology.9</u>th edn. Edward Arnold, London.
- 2. Collee, J.C., Duguid, J.P., Fraser, A.C. and Marimon, B.P. (1996). <u>Mackie and</u> <u>McCartney Practical Medical Microbiology.</u>16th Edn. Churchill Livingstone, London.
- 3. Salle. A.J. (1992). <u>Fundamental Principles of Bacteriology</u>. 7th edn. McGraw Hill Inc. New York.
- 4. Patrick R. Murray, Ken S. Rosenthal and Michael A. (2013). <u>Medical Microbiology</u>. Pfaller. 7th edn. Elsevier, Mosby Saunders.
- 5. Kenneth J. Ryan and C. George Ray. (2004). Sherry's <u>Medical Microbiology</u>. 4th edition. Mc Graw Hill. Medical publishing division.

WEBSITES

- 1. <u>http://textbook of bacteriology.net</u>
- 2. <u>www.microbiology procedure.com</u>
- 3. <u>www.accessexcellence.org</u>
- 4. <u>www.atsu.edu</u>
- 5. <u>www.microbiologybooks.org</u>

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER – II DIAGNOSTIC MICROBIOLOGY

TEACHING HOURS: 60 HOURS COURSE CODE: 16SP15/2C/DGM

OBJECTIVES:

This paper provides

- Knowledge in handling clinical samples.
- Techniques in disease diagnosis.
- Knowledge in correlating clinical diagnosis with laboratory diagnosis.

COURSE OUTLINE :

UNIT I

Introduction to Clinical Microbiology - General approaches to clinical specimens - safety measures -Quality assurance - SOPs in Microbiology Labs - General laboratory wares and their usages and hospital waste disposal. Nosocomial Infections.

UNIT II

Clinical Bacteriology-Collection and transport of specimens - examination of Throat, Sputum, Blood, Urine, Stool, Pus, Skin, C.S.F, Urogenital smear, Pap smear and Slit smear.

UNIT III

Clinical Virology - Diagnosis of Viral infections - collection, handling and processing of specimens for detection. Detection of Viruses by histological, by electron microscopy, serological methods and PCR.

UNIT IV

Clinical Mycology - Collection, transport and storage of Fungal specimens. Stains and media employed. Direct examination, slide culture, chlamydospore formation, hair perforation test.

UNIT V

Clinical Parasitology - Collection, transport and processing of specimens. Preparations of stains and reagents. Processing of stool sample for trophozoites, eggs, larvae, cysts and Oocysts. Examination of blood for malarial parasite, Trypanosoma cruzi, filariasis, Loiasis.Examination of Sputum - Paragonimus eggs. Examination of specimens for Leishmania parasites.

RECOMMENDED TEXTBOOKS

- 1. David Greeenwood, Richard C.B,Slack John Forest.Peutherer (1992). Medical Microbiology. 14thedn, ELBS, Churchill Livingston.
- 2. Ellen Jobaron, Lance R.Peterson and Sydney M. Finegold. (2002). Bailey and Scott's Diagnostic Microbiology. 9th edition. Mosby Inc.
- 3. Maria Dannessaa Delost. (2015). Intoduction to Diagnostic Microbiology for laboratory science. Jones and Barllet Learning comp.

15 Hours

10 Hours

15 Hours

10 Hours

10 Hours

CREDITS: 4 LT P: 310

REFERENCES

- 1. Ellen Jo Baron, Lancer Peterson, Sydney M.Finegold. (1994). <u>Bailey and Scott's</u> <u>Diagnostic Microbiology.</u>9thedn. Mosby. Yearbook, Inc, St. Louis.
- 2. Collee J.C. Duguid J.P. Foraser, A.C, Marimon B.P, (1996). <u>Mackie & McCartney</u> <u>Practical Medical Microbiology.</u> 14thedn, Churchill Livingston.
- 3. Monica Cheesbrough. (2002). <u>District Laboratory Practice in Tropical countries</u>. Cambridge University Press.
- 4. Leslie Collier, Albert Balows and Max Susman. (1998). <u>Topley and Wilson's</u> <u>Microbiology and Microbial Infection.</u> Oxford University Press.
- 5. Kenneth J. Ryan and C. George Ray. (2004). Sherris Medical Microbiology. 4th edition.

WEBSITES

- 1. <u>www.journalel.com/diagnostic</u> microbiology and infectious diseases.
- 2. <u>www.dmdp.org</u>.
- 3. www.dmidjournal.org.
- 4. www.us.elsevierhealth.com/
- 5. <u>www.sciencedirect.com</u>.

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) 5 x 8 marks = 40 marks

SEMESTER II **BIOSTATISTICS AND RESEARCH METHODOLOGY**

TEACHING HOURS: 45 COURSE CODE: 16SP15/2E2/BRM

OBJECTIVES:

To enable students to learn

- Data processing.
- Importance of Biostatistics in Research •

COURSE CONTENT

UNIT I

Biostatistics in Research. Sampling - Designs and Types. Data collection, Tabulation, Diagrams and Graphs, Frequency distribution.

UNIT II

Measures of Central tendency - Mean, Median and Mode, Dispersion - Standard deviation, Probability theory and Normal distribution.

UNIT III

Correlation - Types, Methods, Coefficient of correlation. Regression - Equations, Regression lines. Tests of Significance- Chi-square test, student t test, z test and ANOVA.

UNIT IV

Objectives of Research, Types, Approaches, Criteria of good research, Writing the research report-Title, Authors, Address, Abstract, Keywords, Introduction, Review of literature, Materials and Methods, Results, Discussions, Summary, Acknowledgement and Bibliography, Research report- Tables, Figures and Formatting.

UNIT V

Intellectual Property Rights (IPR). Intellectual Property Protection (IPP). Patents - Claim, Specification and Grant. Comparison of IPR in India and foreign countries.

RECOMMENDED TEXT BOOKS

- 1. Snedecar G.W. and Cochram W.G. (1967). Statistical Methods. Oxford Press.
- 2. Sundar Rao, P.S.S. and Richard, J. (2006). Introduction to Biostatistics & Research methods. Prentice-Hall of India (P) Ltd, New Delhi.
- 3. N. Gurumani. (2006). Research Methodology. MJP Publisher.

REFERENCE BOOKS

- 1. Campbell, R.C. Statistics for Biologists. Cambridge University Press.
- 2. Daniel, W.W. (1995). Biostatistics: A foundation for analysis in health sciences. 6th Edn. John Wiley & Sons, New York.
- 3. Zar, J.H. (2006). Biostatistical analysis. 4th Edn. Pearson education Inc. New Jersey

10 Hours

10 Hours

5 Hours

LTP: 210

CREDITS: 3

10 Hours

10 Hours

- 4. Anderson, J.B., Durston, H. and Poole, M. (1970). <u>Thesis and Assignment Writing.</u> Wiley Eastern Private Limited, New Delhi.
- 5. Webster, J.G. (2004). <u>Bioinstrumentation.</u> John Wiley & Sons (Asia) Pvt. Ltd., Singapore.

WEB RESOURCES

- 1. http://davidmlane.com/hyperstat/
- 2. http://www.biostatistics.com/
- 3. <u>http://www.biostat.ucla.edu/</u>
- 4. http://www.processresearchmethods.org/
- 5. http://www.scalelive.com/research-designs.html

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER II VERMICOMPOSTING AND MUSHROOM CULTIVATION (For other department students)

TEACHING HOURS: 60 COURSE CODE: 16SP15/2E/VMC

OBJECTIVES:

To enable students to learn Cultivation of mushrooms and vermicomposting techniques

COURSE OUTLINE

UNIT I

Vermicomposting-Definition and scope of vermicomposting. Classification and characters of Earthworm species, requirements for vermicomposting- bedding materials, organic wastes and their sources.

UNIT II

Methods of vermicomposting- small scale (pit method) and large scale (windrow method)methods of harvesting of earthworms. Application of Vermicompost in agriculture- Benefits to soil and plants.

UNIT III

Definition and General Characteristics – edible and poisonous mushrooms, Symptoms of mushroom poisoning, Nutritional aspects of edible mushrooms – fats, carbohydrates, proteins, vitamins and minerals – Medicinal value of Mushrooms.

UNIT IV

Mushroom cultivation- Culturing of mushrooms – Single spore method and Tissue culture method . Spawn preparation – Mother spawn and Planting spawn. Design of a mushroom farm (Composting yard and bulk pasteurization chamber). Steps in cultivation of button mushroom (*Agaricus bisporus*) - Composting methods (Long and Short) – Formulations of compost- Spawning – Definition and types. Production of crop – Shelf, Tray and Bag system. Casing operation. Harvesting of Mushrooms.

UNIT V

Management of mushroom pests (insects and nematodes). Diseases of mushroom – Bacterial (Bacterial blotch), Fungal (dry bubble and wet bubble) and Viral. Post harvest techniques (Long term and short term).

RECOMMENDEDTEXT BOOKS

- 1. Changs, T., and Hayanes, W.A. (1978). <u>Biology and Cultivation of Mushrooms</u>. Academic Press, NewYork.
- 2. Singh and Singh. (2005). Modern Mushroom cultivation. Agrobiose publishers.
- 3. Dubey and Maheshwari. (2007), <u>A textbook of biotechnology, S. Chand and company</u>

10 Hours

20 Hours

10 Hours

10 Hours

10 Hours

CREDITS: 4

LTP:310

REFERENCE BOOKS

- 1. Kannaiyan. (1999). Cultivation of Edible Mushrooms. TNAU Publication.
- 2. Ismail, S.A. (1997). Vermicology-The Biology of Earthworm. Orient longman.
- 3. Zadrazil, F and Grabbe, K. (1983). Edible Mushroom, Biotechnology 3:145 -187.
- 4. Garcha, H.S (1984). <u>A Manual of Mushroom growing.</u> PAU Publication.
- 5. Singh .H. (1991). <u>Mushroom-The art of Cultivation</u>. Sterling Publishers.

WEB RESOURCES

1.http://agritech.tnau.ac.in/org_farm/orgfarm_vermicompost.html

2.<u>http://www.fao.org/</u>

3.<u>http://www.nhb.gov.in/</u>

4.www.mushroom-directory.com/

5.www.fungi.fun.org/mushword/oyster.m/

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

SEMESTER II GENERAL MICROBIOLOGY AND MICROBIAL PHYSIOLOGY (PRACTICAL)

TEACHING HOURS: 60 COURSE CODE: 16SP15/2C/PR1

CREDITS: 4 L T P: 0 0 4

OBJECTIVE: To train the students in basics of General Microbiology

COURSE CONTENT

- 1. Cleaning of glasswares.
- 2. Sterilization Physical agents- Moist heat, Dry heat, Filtration.
- 3. Sterilization- Chemical agents
 - a) Phenol Coefficient method
 - b) Agar Plate Sensitivity method
- 4. Quality Control of Sterilization Physical, Chemical Indicator strips. Biological spore strips.
- 5. Calibration of Micrometer and measurement of Microbial size.
- 6. Observation of Algae by Wet Mount.
- 7. Demonstration of motility of bacteria by Hanging Drop Method.
- 8. Staining methods Gram staining, Acid fast staining, Negative staining, Metachromatic granule staining and Spore staining.
- 9. Preparation of Solid, Liquid and Semi-solid media.
- 10. Pure culture technique- Streak Plate, Pour Plate and Spread Plate techniques.
- 11. Demonstrations of Fungi by LPCB mount and Slide culture technique.
- 12. Anaerobic Culture of bacteria.
- 13. Measurement of bacterial growth- by direct count and turbidity method.
- 14. Effect of temperature on Microbial growth and determination of thermal death point.
- 15. Effect of heavy metals on bacteria- Oligodynamic action.
- 16. Effect of pH on microorganisms.
- 17. Effect of UV radiation on microorganisms.
- 18. Chemotherapeutic agents- Kirby-Bauer method and Synergistic effect of drug combination.

QUESTION PAPER PATTERN

Time : 9 Hours (3 hours, 3 days)

Max. Marks: 60

Major- 25 marks Minor-15 marks Spotters- 5 x 2 =10 marks Record – 5 marks Viva- voce- 5 marks

SEMESTER II MEDICAL MICROBIOLOGY (PRACTICAL)

TEACHING HOURS: 75 COURSECODE: 16SP15/2C/PR2

CREDITS: 4 L T P: 0 0 5

OBJECTIVES

- 1. To Learn the Concepts of Sample Collection and Diagnostics.
- 2.To have hands on training in the field of Bacteriology, Virology, Mycology and Parasitology.

COURSE CONTENT

BACTERIOLOGY

- 1. Collection and transport of clinical specimens.
- 2. Direct examinations wet films for faeces, staining for Pus, Sputum, Throat / Ear/Nasal /Wound swabs.
- 3. Differential and Special Staining methods- AFB, Metachromatic, Capsular-positive, Flagella.
- 4. Cultivation and Isolation methods Basal, Differential, Enriched, Selective and Special media for the Pathogenic Bacteria.
- 5. Isolation and identification biochemical identification test for the respective Bacteria-Staphyloccocus, Streptococci, E.coli, Klebsiella, Pseudomonas, Proteus, Salmonella, Shigella.
- 6. Antibiotic Sensitivity Tests Disc Diffusion Stokes and Kirby Bauer methods.
- 7. MBC and MIC techniques Agar and broth dilution methods.
- 8. Beta-Lactamase activity- Acidometric method, Iodometric method.

VIROLOGY

- 9. Isolation and characterization of Bacteriophage from natural resources.
- 10. Phage titration.
- 11. Inoculation of Virus into Chick Embryo CAM and yolk Sac.
- 12. Observation of Viral inclusions and CPE stained smears.
- 13. Detection of viral infections by ELISA.

MYCOLOGY

- 14. KOH observation of Skin, Hair and Nail scrapings for fungi, Woods Lamp Examination.
- 15. Preparation of fungal media- SDA/ Corn Meal Agar- Cultural and Microscopic characteristics of Mucor, *Rhizopus, Aspergillus, Penicillium, Candida*, Dermatophytes, *Fusarium, Curvularia*.
- 16. Slide Culture and LPCB mount, Chlamydospore formation on CMA.
- 17. Detection of *Candida albicans* Germ tube test. Sugar Assimilation and Fermentation.

PARASITOLOGY

- 18. Examination of Parasites in Clinical specimens ova / cysts in feaces Direct and Concentration methods –Formal Ether and Zinc sulphate methods, Saturated Salt Solution Method.
- 19. Blood smear examination of Malarial Parasites -Leishman's stain.
- 20. QBC method for Malarial parasite detection- Demonstration

QUESTION PAPER PATTERN

Time: 9 Hours (3 hours, 3 days)

Max. Marks: 60

Major- 25 marks Minor-15 marks Spotters- 5 x 2 =10 marks Record – 5 marks Viva- voce- 5 marks

SEMESTER- III IMMUNOLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/3C/ILY

OBJECTIVES

This paper focuses on

- Basic Immunology.
- Human defense mechanisms against infections.
- Applications of Immunological Techniques.
- Knowledge in Immune Response, autoimmune diseases and Vaccines.

COURSE CONTENT:

UNIT I:

Introduction - History, Scope of Immunology and Recent development. Cells of Immune system. Hematopoiesis - Lymphoid and Myeloid Lineage, Mononuclear - Phagocytic system. Lmphoid Organs – Primary-Bone Marrow, Thymus and Bursa of Fabricius, Secondary- Lymph Node, Spleen and MALT, Tertiary- CALT, GALT, M-Cells.

UNIT II:

Antigens and Antibodies – Antigens - Factors Influencing Antigenicity, Epitopes, Haptens, Superantigen, Mitogen, Adjuvants. Antibodies - Structure, Classification- Types and Functions. Antigen – Antibody Interaction- Agglutination-Heamagglutination (*Salmonella* and its antibody reaction), Latex agglutination- CRP, ASO, RF. Precipitation- Double Immunodiffusion, SRID, Immunoelectrophoresis, Principles and Application of ELISA, RIA, Immunofluorescence.

UNIT III:

Host Parasite Relationship and Immunity - Introduction and Classification Innate and Acquired. Factors involved in Immunity. Complement, MHC - Definition, Structure, Types, Function and MHC restriction. HLA typing and its application in organ transplantation.

UNIT IV:

Immunoprophylaxis – Importance and Applications. Active and Passive Immunization, Advantages and Disadvantages of Immunization. Latest Immunization schedule. Vaccines – Types of Vaccines – Live, Killed, Subunit, DNA vaccine. Hypersensitivity– Introduction to Hypersensitivity Reactions. Types - Mechanism symptoms and tests. Skin test – Immediate and Delayed.

UNIT V:

Autoimmune Diseases - Mechanism. Types- Cell Mediated, Humoral Mediated – Treatment of Auto-Immune Diseases. Immuno-tolerance – Mechanism. Immunodeficiency diseases-Immunology of AIDS, SCID. Cancer biology - Cancer induction, Tumour Antigens, Immunotherapy.

15hrs

10 hrs

15hrs

10hrs

10hrs

CREDITS: 4 LTP: 310

RECOMMENDED TEXT BOOKS:

1. Kuby, J., <u>Immunology</u> 2nd edn. H.W.Freeman and company. New York.

2 Janeway C, Travers P, Walport M, Sholmchik M. Immunobiology 6th edn Gerald Science

3. Roitt R.I.M, <u>Essential Immunology</u>.10th edn. Blackwell Scientific Publishers.

REFERENCES:

1. Stites D.P., Abba I.Terr, Parslow T.G. (1997). <u>Medical Immunology</u>. 9th edn, Prentice-Hall Inc.

2. Tizard, R.I. <u>Immunology- An Introduction</u>. 4thedn. Saunders College Publishing, Philadelphia.

3. Nairn, R., & Helbert, M. <u>Immunology for Medical Students.</u> 2nd edn. Mosby International limited.

4. Humphrey, J.H. and White, R.G. (1995). <u>Immunology for Students of Medicine</u>, 5th edn. ELBS, London.

5. Ananthanarayanan, R, & Panicker, C.K.J,. <u>Textbook of Microbiology</u>. Orient Longman.

WEBSITES:

- 1. www.healthline.com
- 2. <u>www.everydayhealth.com</u>
- 3. <u>www.organtransplants.com</u>
- 4. <u>www.transplantindia.com</u>
- 5. www.nlm.nih.gov

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

10 Hours

15 Hours

10 Hours

15 Hours reatment p

10 Hours

Microbiology of Air- Droplet Nuclei, Aerosols, Air borne transmission of Microbes. Assessment of air quality settlement under gravity, filtration technique, centrifugation, Impingement in solid and liquid, air Sanitation and air borne diseases – Bacterial, fungal, viral and protozoan.

• Gain knowledge on Air, Water, Soil and Agricultural Microbiology

• Learn aspects of biofertilizer production.

UNIT II

UNIT I

OBJECTIVE: To enable students to

COURSE CONTENT

Microbiology of potable water – Municipal water treatment. Sewage treatment process – Primary treatment process-screening and straining, grit removal, sedimentation, flotation, Coagulation and Flocculation, Secondary treatment process – Aerobic and Anaerobic, and tertiary treatment- Disinfection. Disposal of sewage sludge. Water borne Diseases. Microbiological examination of water quality – Multiple tube test, Membrane filtration technique and BOD.

UNIT III

Utilization of Solid Waste as Food, Feed and Fuel- Composting, Vermicomposting, Biogas production, Single Cell Proteins, Biodegradation of Xenobiotics - Recalcitrant Halocarbons, Recalcitrant, TNTs, PCBs, Synthetic polymers, Leather and Paper. Pollution control bodies and Environmental laws in India.

UNIT IV

Distribution of Microorganisms in Soil, Rhizosphere effect, Rhizosphere ratio, Rhizosphere, Spermosphere, Phyllosphere. Biofertilizer – Uses and Production of *Rhizobium sp.*, *Azotobacter sp.*, *Azospirillum sp. Cyanobacteria* and Phosphate solublisers. Distribution and significance of Extremophiles.

UNIT V

Plant microbial disease-Causative agents, disease cycle and control of Rust, Red-rot in sugarcane, Citrus Canker, Soft rot in carrot, Crown gall disease. Biopesticides – Fungal – Bacterial, and Viral.

SEMESTER- III ENVIRONMENTAL MICROBIOLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/3C/EMY

CREDITS: 4 LTP: 310

RECOMMENDED TEXT BOOKS

- 1. Atlas R. M and Bartha R. (1992). <u>Microbial Ecology Fundamentals and Applications</u>. 3rd edn Benjamin & Cummings Redwood City .CA
- 2. Agrios, GN (1978). <u>Plant pathology</u> 2nd edn Academic press, NewYork.
- 3. SubbaRao.N.S. <u>Biofertilizers in Agriculture and Forestry</u>, 3rd edn. Oxford and IBH Publishing co. Pvt Ltd.

REFERENCE BOOKS

- 1. Rheinheimer .G (1980). <u>Aquatic Microbiology</u>. 2nd edn. John Wiley And Son, London.
- 2. Mitchell.R.(1974). <u>Introduction to Environmental Microbiology</u>. Prentice- Hall Inc. Englewood Chiffs, New Jersey.
- 3. Rao, S.N.S., (1995) . Soil Microorganisms and Plant Growth. Oxford.
- 4. Daniel, C.J. (1996). Environmental Aspects of Microbiology, Bright Sun Publications.
- 5. Lynch, J.M. and Poole, N.J. (1979) <u>Microbial Ecology: A. Conceptual Approach</u>. Blackwell Scientific Publications, London.

WEB RESOURCES

- 1.www.oisat.org/pests/diseases.html
- 2.www.britannica.com/science/plant disease
- 3. Environmentshumail.blogspot.in/2010/11/introduction-of-all-environments-air-is.html.
- 4.Agritech.tnau.ac.in
- 5.Ecoursesonline.iarsi.res.in/mod/page/view.php?id=5225

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) 5 x 8 marks = 40 marks

SEMESTER-III INDUSTRIAL MICROBIOLOGY

TEACHING HOURS: 60 COURSE CODE: 16SP15/3E3/IMY

CREDITS: 3 LTP 310

OBJECTIVES

To enable students to gain knowledge

- On fermentation process.
- Industrial production of Microbial products. •

COURSE CONTENT

UNIT I

Introduction- Scope of Industrial Microbiology and Fermentation technology. Study of industrially important microorganisms and their preservation. Criteria for selection and strategies for strain improvement, maintenance and containment of recombinant organisms.

UNIT II

Fermentation process- batch culture kinetics; effect of environment, temperature, pH, nutrient concentration, monitoring microbial growth in culture; cell number, direct and indirect methods. Continuous culture: concepts of Newtonian and Non-Newtonian fluids, plastic fluids, apparent viscosities; antifoam agents. Inoculum development - Yeast, Bacteria and Mycelium.

UNIT III

Basic features, design, components of a typical fermentor, different types of fermentor. Fermentation media - formulation strategies- sources of carbon and nitrogen, vitamins and minerals; role of buffers, precursors, inducer and inhibitors. Industrial sterilization sterilization of media, air and equipment - Batch and continuous sterilization.

UNIT IV

Down-Stream Processing- Choice of recovery process, biomass separation from fermentation media- Precipitation, filtration, centrifugation, Cell disruption for intracellular products, solvent extraction and recovery, chromatography, membrane processes, drying, crystallization and whole broth processing. Industrial effluent treatment and quality assurance- GMP, QC of raw materials and Microbiological assays.

UNIT V

Industrial Production of antibiotics, aminoacid, vitamins, alcoholic beverages - Wine and Beer, enzymes and steroids. Recent trends of biotechnological and microbiological patents. Government regulations for microbial products.

10 hours

10 hours

15 hours

10 hours

15hours

33

RECOMMENDED TEXT BOOKS

- 1.Stanbury, P. F., Whitaker, A., and Hall, S.T. (1995). <u>Principles of Fermentation</u> <u>Technology</u> 2nd edn. Pergamon press.
- 2.Reed, G. (1982) Industrial Microbiology. Mac Millan Publishers Ltd., Wisconsin.
- 3. Patel A.H. Industrial Microbiology. Mac Millan India Pvt Ltd.

REFERENCE BOOKS

- 1. Prescott, H., and Dunn, Industrial Microbiology, 4th edn. CBS publishers.
- 2. Casida, J. E. (1968) Industrial Microbiology. Wily Eastern.
- 3. Demain, A.L. and Solomon, N.A. (1986) <u>Manual of Industrial Microbiology and</u> <u>Biotechnology</u>. American Society for Microbiology, Washington
- 4. Peppler, H.J. and Pearl Man, D. (1979). <u>Fermentation Technology</u>, Vol 1 & 2, Academic Press, London.
- 5. Baumberg, S., Hunter, I.S. and Rhodes, P.M. (ed). (1989) <u>Microbial Products New</u> <u>Approaches</u>. Cambridge University Press, Cambridge, UK.

WEB RESOURCES:

- 1. <u>http://www.yourarticlelibrary.com/micro-biology/bioreactors-fermenters-function-designs-and-types/33628/</u>.
- 2. <u>http://www.slideshare.net/saileegurav/downstream-processing-30441992</u>
- 3. <u>http://www.srmuniv.ac.in/sites/default/files/files/PENCILLIN.pdf</u>
- 4. <u>http://microbiollogy.blogspot.com/2014/01/scope-of-biotechnology-industrial.html</u>.
- 5. <u>https://en.wikipedia.org/wiki/Alcoholic_beverage</u>.

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

NON MAJOR ELECTIVE SEMESTER III GARDENING AND LANDSCAPING

(For other Department Students)

TEACHING HOURS: 60 COURSE CODE: 16SP15/3E/GLP

CREDITS: 3 LTP: 310

OBJECTIVE

To enable students

- to gain knowledge on basic aspects of horticulture.
- to learn about ornamental and aesthetic gardening.

COURSE CONTENT

UNIT I

Fundamentals of ornamental horticulture – principles of gardening. Methods of plant propagation- seed, cutting, grafting and layering -advantages and disadvantages.

UNIT II

History of gardening in India-Styles of garden- components of garden Methods of planting of flowerbed, hedges, topiary, water garden, paved garden - maintenance.

UNIT III

Lawn making- types of grasses- methods of planting-maintenance. Nursery management. operations and maintenance of a nursery, media and containers, Nursery practices for roses.

UNIT IV

Important plant species in gardening. Definition, Classification, Planting and maintenance of annuals- trees, shrubs, climbers and creepers.

UNIT V

Basic concepts and art principles of landscaping- Indoor Landscaping –Requirements for Indoor gardening, Gardening in tubs and hanging baskets- Residential landscape design.

RECOMMENDED TEXT BOOKS

- 1. Sheela, V.L. (2011). Horticulture. MJP Publishers.
- 2. Randhawa and Amitabha (1998). Floriculture in India. Allied Publishers.
- 3. Alan. T (1985). Green house gardener. Marshall Cavendish Books.

15 Hours

10 Hours

10 Hours

15 Hours

10 Hours

REFERENCE BOOKS

- 1. William Flemer. (1972). <u>Nature's guide to successful gardening and landscaping</u>. Crowell publications.
- 2. Reilly, A. (1990) .<u>Home Landscaper</u>. Home Planners.
- 3. Black and Decker. (1993). Landscape design and construction. Creative Pub Intl
- 4. Taylor, P. (2006). Garden. Oxford University Press.
- 5. Kumar, N. (1989). Introduction to Horticulture. Rajalakshmi Publications

WEB RESOURCES

- 1. <u>www.garden.org/</u>
- 2. www.iloveplants.com/
- 3. www.extension.iastate.edu/store
- 4. http://edis.ifas.ufl.edu.
- 5. www.oliviassolutions.com/

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) 5 x 8 marks = 40 marks

III SEMESTER

SOFT SKILL

COMPUTING SKILLS FOR COMPETITIVE EXAMINATIONS

TEACHING HOURS: 30	CREDITS: 2
COURSE CODE : 16SP15/3S/CSC	L T P: 110
OBJECTIVES:	

This paper provides knowledge on

- Basic mathematics required for competitive exams.
- Logical reasoning and quantitative aptitude.

CONTENT

Unit I

Basic Mathematics - BODMAS. Arithmetic rules - Commutativity of addition and multiplication. Factorization - HCF. LCM. Fractions - Proper, Improper, Mixed and Equivalent fractions. Area and perimeter. Basic Algebra.

Unit II

Calculation of Mean and Average. Ratio and proportion. Direct and inverse proportions. Exponents and power. Square roots and cube roots. Linear equations. Weights and Measures. Metric conversions. Percentage. Profit and Loss.

Unit III

Problem solving in relation with logical reasoning, day and date, hour and seconds, time and direction, velocity and direction of Train. Missing numbers. Series of Alphabets. Alphabet and Number codes. Interpretation from Union and Intersect. Data handling - Pie charts and graphs.

RECOMMENDED TEXT BOOKS

- 1. Dr. Surender Singh. UGC NET Paper I. Tata McGraw Hill Education.
- 2. S. Chand .Quantitative aptitude for competitive examinations. S. Chand publications 7th edition.

10 Hours

10 Hours

10 Hours

REFERENCES BOOKS

1. Timothy Gowers .<u>The Princeton companion to Mathematics</u>. First edition. Princeton University Press.

2. Dr. R. S Agarwal. <u>A Modern Approach to verbal and Non verbal Reasoning</u>. S. Chand publications.

WEB RESOURCES

1.<u>http://www.csirhrdg.res.in/</u>.

2. http://www.math.com/.

QUESTION PAPER PATTERN

Time: 3 Hours

Section A- Multiple choice questions

Max Marks: 50 50X1 mark = 50 marks

SEMESTER- IV

MOLECULAR BIOLOGY AND RECOMBINANT DNA TECHNOLOGY

TEACHING HOURS: 60 hrs

COURSE CODE: 16SP15/4C/MBY

OBJECTIVES

To enable students to understand

- the Structure and Functions of Macromolecules.
- Principles and applications of Gene cloning.

COURSE CONTENT

UNIT I

Structure and functions of protein. Gene expression - Transcription- Central Dogma, Transcription in Prokaryotes and Eukaryotes. Structure and production of eukaryotic mRNA. Self splicing introns- capping and poly A tailing. Genetic code - triplet code, deciphering the genetic code, characters of genetic code. Translation - Structure and functions of tRNA. Ribosomes. Initiation of Translation in Prokaryotes and Eukaryotes, Elongation, Translocation and Termination. An overview of protein sorting and transport.

UNIT II

Gene cloning. Isolation of DNA - Bacteria, Phage, Plasmid, Plant and animal DNA. Enzymes involved in gene cloning. Restriction endonucleases (principles and types), Ligases. Cloning vectors – Plasmids pBR322, pUC vectors. Plasmids as shuttle vectors. λ Phages, M13 phage. Cosmids, Phagemids. Artificial chromosomes -YAC and BAC.

UNIT III

Transformation. Artificial techniques - Calcium chloride induction, electroporation, microinjection, biolistic method. Gene expression in host cell - *E.coli* and yeast genomic and cDNA libraries - construction and screening.

UNIT IV

Methods of Clone identification - colony and plaque hybridization probes. Gene probes - Reporter Genes. Southern, Northern and Western blot. PCR.

UNIT V

An overview of applications of Genetic Engineering - Agriculture and Medicine. Vaccines, growth hormones, Insulin, Blood products, TPA. Antisense technology.

RECOMMENDED TEXT BOOKS

- 1. Brown T. A. (1995). Gene Cloning. Chapman and Hall.
- 2. Russell P.J, (2010). <u>Genetics-a molecular approach</u> 3rd edn, Benjamin Cummings.
- 3. Bernard R.Glick and Jack J. Pasternak (1998). <u>Molecular Biotechnology</u>. ASM Press, Washington, D.C.

10 Hours

10 Hours

10 Hours

15 Hours

15 Hours

CREDITS: 4 LTP: 310

REFERENCE BOOKS

- 1. Desmond S.T. Nicholl. (1994). <u>An Introduction to Genetic Engineering</u>. Cambridge Press.
- 2. Watson, J. D., Gilman, M., Witkoweski, J., (1992). <u>Recombinant DNA</u>, 2nd edn, Scientific Books.
- 3. Old R. W. and Primrose S. B. (1989). <u>Principles of Gene Manipulation</u>. 4th edn. Black well Scientific Publications, London.
- 4. Freifelder, D. (1995) Molecular Biology. Narosa Publishing House, New Delhi.
- 5. Glover, D.M. (1984) <u>Gene Cloning: The Mechanism of DNA Manipulation</u>. Chapman and Hall, London.

. WEB RESOURCES

- 1. http://www.cellbio.com/.
- 2. <u>http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Projects00/rdna/rdna.html</u>.
- 3. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/R/RecombinantDNA.html.
- 4. http://biology.kenyon.edu/courses/biol114/Chap08/Chapter_08a.html.

5.http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/R/RecombinantDNA.html

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

Section C- Answer any 2 questions (4 questions covering any Four units will be given) 2 x 20 marks = 40 marks

IV SEMESTER MICROBIAL GENETICS

TEACHING HOURS: 60 COURSE CODE: 16SP15/4E4/MIG

CREDITS: 3 L T P: 3 1 0

OBJECTIVES:

To promote interest among students about

- The structure and importance of Genetic material.
- Gene transfer mechanisms and their relevance to Humans.

COURSE CONTENT

UNIT I

DNA as genetic material with experimental evidences– Griffith's, Avery's, Hershey and Chase's experiments. Composition and Structure of DNA and RNA. DNA double helix-Watson and Crick's model. A-DNA, B-DNA and Z-DNA forms, the law of constancy, C-value paradox.

UNIT II

Replication of DNA- Meselson's and Stahl experiment. Replication in Prokaryotes – Models of DNA replication –Replisome, Rolling circle replication. Enzymes involved in replication. Replication in Eukaryotes- replication enzymes, Repair of DNA damage- mismatch repair, photo reactivation, excision repair, SOS, recombination repair and glycocylase system

UNIT III

Mutation, Jackspot, Hotspots, fluctuation tests, toxicity testing, types of mutationmicrolesions (point mutations), base substitutions, transition, transversion, frameshift, silent, missense, nonsense, leaky, conditional mutations-permissive and non permissive. Spontaneous mutations-errors during DNA replication, tautomerism, depurination, deamination, transposition, genetic rearrangement. Induced mutations- base analogues, base modifiers, intercalating agents, physical agents, reverting and suppressor mutations.

UNIT IV

Gene Transfer Mechanisms- Transformation- Natural transformation, Competence, Uptake of DNA, Role of Natural Transformation, Artificially Induced Competence- CaCl₂ induction, Electroporation- Genetic mapping in bacteria by transformation. Conjugation- Mechanism, Sex factor – F, Hfr strains. Mapping of bacterial genes by conjugation. Transduction-Lytic and Lysogenic pathways in Bacteriophages- Transduction mapping of Bacterial Chromosomes- Generalized and Specialized Transduction.

UNIT V

Plasmids - Nomenclature, General properties of plasmids- replication, copy number, host range, Incompatibility, Natural versus artificial plasmids. Transposons- Insertion sequences and composite transposons, replicative, non-replicative and conservative transposition. Application of phages in microbial genetics.

10 Hours

10 Hours

15 Hours

15 Hours

10 Hours

RECOMMENDED TEXT BOOKS

- 1. Friedfelder D. (1990). <u>Microbial Genetics</u>, 2nd edn, Navosa publishing house, India
- 2. Gardner E.J and Snusted D.P (1991). <u>Principles of Genetics</u>, 8th edition, John Wiley and sons Inc.
- 3. Peter Paolella, <u>Introduction to Molecular biology</u>, International edition, McGraw-Hill.

REFERENCE BOOKS

- 1. Hays W. (1985). <u>The Genetics of Bacteria and Viruses</u>.2nd edn. Blackwell Scientific Publishers, Oxford.
- 2. Synder L and Chapness W. (1997). <u>Molecular genetics of bacteria</u>. ASM Press Washington-D.C.
- 3. Russell P.J. (2010). <u>Genetics in Molecular approach</u>, 3rd edn Pearson New International Edn.
- 4. Strachan, T. and Read, A. P. (1996). <u>Human Molecular Genetics</u>, Bios Scientific Publishers, U.K.
- 5. Benjamin Lewin. (1997) .Genes VII. Oxford University Press, London, UK.

WEB RESOURCES

- 1. http://www.scisdsu.edu/smalog/microbialgenetics
- 2. http://science.jrank.org/pages/4303/microbialgenetics.htm
- 3. http://www.nature.com
- 4. http://www.garlandscience.com
- 5.http://www.zapmeta.com

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \ge 8 \text{ marks} = 40 \text{ marks}$

Section C- Answer any 2 questions (4 questions covering any Four units will be given) 2 x 20 marks = 40 marks

BIOINFORMATICS

SEMESTER-IV

TEACHING HOURS: 45 COURSE CODE: 16SP15/4E5/BIF

CREDITS: 3 L T P: 2 1 0

OBJECTIVE

To enable students to

- Learn basic concepts of Bioinformatics.
- Gain Knowledge about biological databases.

COURSE CONTENT

UNIT I

Introduction- Objective and Applications of Bioinformatics. Internet Protocol (TCP/IP), Worldwide web (WWW), File transfer protocol (FTP), HTML, HTTP, Telnet, URL. Computer tools for Sequence Analysis.

UNIT II

Biological Data Base- types-primary, secondary, composite. Nucleic acid sequence databases: GenBank, EMBL, DDBJ-Protein sequence databases- SWISS-PROT, TrEMBL, PIR, PDB-Genome Databases at NCBI, EBI, TIGR, SANGER.

UNIT III

Similarity searching, Pair wise and multiple alignments. Homology algorithms (BLAST) for Proteins and Nucleic Acids, Open Reading Frames, Conserved Protein Motifs related Structure and Function.

UNIT IV

Whole genome analysis – Preparation of ordered Cosmid Libraries, Bacterial Artificial Chromosome Libraries, and Shot Gun Libraries. Conventional (Sanger's and Gilbert) and Modern DNA Sequencing Methods.

UNIT V

DNA micro array - Printing of Oligonucleotide and PCR products in glass slides and nitrocellulose paper. RT-PCR. Analysis of single nucleotide polymorphism using DNA chips. Proteome analysis- two dimensional separation of total cellular proteins by mass spectroscopy.

RECOMMENDED TEXT BOOKS

- 1. Attwood, T.K. and Parry-Smith, D.J. (1999). <u>Introduction to Bioinformatics</u>. Addision Wesley Longman Limited, England.
- 2. Sharma, Munjal, Shankar, (2008).<u>A text book of Bioinformatics</u>-, First South Indian Edition, Rastogi Publications.
- 3. Jin Xiong, (2011). <u>Essential bioinformatics</u>, First south Indian Edition, Cambridge University Press.

9 Hours

9 Hours

43

9 Hours

9 Hours

9 Hours

~

REFERENCE BOOKS

- 1. Paul G. Higgs and Teresa K. Attwood. (2005).<u>Bioinformatics and Molecular</u> <u>Evolution</u>. Blackwell publishing, First Indian Reprint.
- 2. Abhilash, (2010). Bioinformatics.M. B Publishers and distributors Pvt Ltd. First Edition
- 3. P.K.Gupta, (2008). <u>Biotechnology and Genomics</u>, Rastogi Publications.
- 4. Yi-Ping Phoebe Chen, (2007). <u>Bioinformatics Technologies</u>. Springer Publications.
- 5. Harshawardhan P.Bal, (2006). <u>Bioinformatics Principles and Applications</u>, Tata McGraw-Hill Publishing Company Limited.

WEB RESOURCES

- 1. <u>http://ncbi.nlm.nih.gov/pubmed</u>
- 2. http://bioinformaticsweb.net/
- 3. <u>http://www.ebi.ac.uk/</u>
- 4. www.bioinformatics.org/
- 5. <u>http://www.ii.uib.no/~inge/list.html</u>.

QUESTION PAPER PATTERN

Time: 3 Hours

Max Marks: 100

Section A- Answer all 10 questions (10 questions will be given covering all Five Units) $10 \ge 20$ marks = 20 marks

Section B- Answer any 5 questions (8 questions will be given covering all Five Units) $5 \times 8 \text{ marks} = 40 \text{ marks}$

Section C- Answer any 2 questions (4 questions covering any Four units will be given) 2 x 20 marks = 40 marks

SEMESTER-IV

IMMUNOLOGY AND MOLECULAR BIOLOGY (PRACTICAL)

TEACHING HOURS: 60 COURSE CODE: 16SP15/4C/PR3

CREDITS: 4 LTP: 004

OBJECTIVE

To enable students to

- Have hands on training in Molecular techniques.
- Learn the aspects of rDNA technology.

COURSE CONTENT

- 1. Blood collection, Serum and Plasma separation.
- 2. RBC, WBC and Differential Cell Counts.
- 3. Separation of Lymphocytes from Peripheral Blood by Density Gradient Centrifugation.
- 4. Purification of Antibodies by Ammonium Sulfate Precipitation.
- 5. Bacterial agglutination.
- 6. Latex agglutination RF, ASO, CRP.
- 7. WIDAL.
- 8. RPR.
- 9. Haemagglutination TPHA, ABO blood grouping.
- 10. Precipitation estimation of antigen concentration by SRID, Double Immunodiffusion-pattern and specificity and Immunoelectrophoresis. Staining of Precipitation lines.
- 11. Serum Electrophoresis.
- 12. Coomb's testing.
- 13. Estimation of DNA by diphenylamine method.
- 14. Estimation of RNA by Orcinol method.
- 15. Determination of Tm value of DNA.
- 16. Isolation of Plasmid DNA.
- 17. Isolation of Chromosomal DNA.
- 18. Isolation of RNA.
- 19. Restriction Digestion of DNA & Ligation of Digested DNA fragments.
- 20. Transformation.
- 21. Replica Plate Technique.
- 22. Separation of Proteins by Column Chromatography.
- 23. Separation of Proteins by SDS PAGE.
- 24. Western blot.
- 25. PCR.

TEMPLATE OF THE QUESTION PAPER - 60marks (9 hours, 3 days)

- Major 25 marks
- Minor 15 marks
- Spotters 10 marks
- Record 5 marks
- Viva-voce 5 marks

SEMESTER- IV ENVIRONMENTAL MICROBIOLOGY (PRACTICAL)

TEACHING HOURS: 60 COURSE CODE: 16SP15/4C/PR4

CREDITS: 4 LTP:004

OBJECTIVE

To enable students to

- Hands on training in quality analysis of Water and Air Microbiology.
- Gain knowledge in isolation of bacterial bio-fertilizers.

COURSE CONTENT

- 1. Water analysis-Multiple Tube Test:
 - a. Presumptive test.
 - b. Confirmed test.
 - c. Completed test
- 2. Membrane filtration technique.
- 3. Estimation of BOD of the sewage sample.
- 4. Enumeration of bacteria and fungi from air Settle plate technique.
- 5. Enumeration of bacteria and fungi from air Air sampler.
- 6. Isolation of *Rhizobium Sp.* from nodules.
- 7. Isolation of *Azotobacter Sp.* from soil.
- 8. Isolation of *Azospirillum Sp* from soil
- 9. Isolation of *Frankia Sp* from soil.
- 10. Isolation of Phosphate solubilisers from soil.
- 11. Preparation of Biofertilizer and testing the efficiency of prepared biofertilizer
- 12. R:S ratio of soil.
- 13. Estimation of soil enzymes- urease and phosphatase.
- 14. Study of phylloplane microflora by leaf impression method.
- 15. Isolation of cellulose degrading bacteria.
- 16. Isolation of phenol degrading organisms from soil.
- 17. Isolation of pesticide degrading bacteria from soil.
- 18. Preparation of a vermicompost.

TEMPLATE OF THE QUESTION PAPER - 60marks (9 hours, 3 days)

Major- 25 marks Minor-15 marks Spotters- 5 x 2 =10 marks Record – 5 marks Viva- voce- 5 marks

SEMESTER- IV FOOD AND INDUSTRIAL MICROBIOLOGY (PRACTICAL)

TEACHING HOURS: 60 COURSE CODE: 16SP15/4C/PR5

CREDITS: 4 LTP: 004

OBJECTIVE

Hands on training in quality analysis of food

- Quality analysis of milk.
- Preparation of industrially important products.

COURSE CONTENT

- 1. Isolation of Bacterial and fungal pathogens from spoiled food.
- 2. Direct microscopic examination and standard plate count of milk.
- 3. Isolation of lactic acid bacteria from probiotic foods.
- 4. Methylene blue reductase test.
- 5. Phosphatase test
- 6. Resazurin test.
- 7. Sterility testing of injectables.
- 8. Isolation of antibiotic producer by crowded plate technique and bioassay of penicillin.
- 9. Production of vitamin (Cyanocobalamine) and bioassay of Vitamin B₁₂.
- 10. Wine production.
- 11. Production of Beer from cereals.
- 12. Preparation of Sauerkraut.
- 13. Cheese production.
- 14. Separation of amino acids by ion exchange chromatography.
- 15. Comparison of amylase activity of *Aspergillus* culture grown in liquid medium and on solid substrate.
- 16. Immobilization of enzyme in calcium alginate beads and qualitative and quantitative estimation of activity.
- 17. Visit to Food / Beverage Industry.

TEMPLATE OF THE QUESTION PAPER - 60marks (9 hours, 3 days)

Major- 25 marks Minor-15 marks Spotters- 5 x 2 =10 marks Record – 5 marks Viva- voce- 5 marks

IV SEMESTER

SOFT SKILL

ESSENTIALS OF ENTREPRENEURSHIP

TEACHING HOURS: 30 COURSE CODE: 16SP15/4S/EEP

OBJECTIVES:

To promote interest among students about

- The importance of presentation skills. •
- Gain knowledge about Entrepreneurship.

COURSE CONTENT

UNIT I

Resume writing- Tips for making good impression-Interview dress, hair style, shoes and posture. Writing e-mail, Telephone interview.

UNIT II

Women Entrepreneurship-need and problems faced by women entrepreneurs- styles and types. Development programs- Financial assistance for Small scale units-Role of SSI sector.

UNIT III

Identification of Business opportunity. Ownership structures-Proprietorship, Partnership, company, Co-operative, Franchise.

RECOMMENDED TEXT BOOKS

- 1. Hisrich, Robert D., Michael Peters and Dean Shepherded. Entrepreneurship, Tata Mc Graw Hill, ND.
- 2. Barringer, Brace R., and R., Duane Ireland. Entrepreneurship, Pearson Prentice Hall, New Jersey (USA).

REFERENCE BOOKS

- 1. Lall, Madhurima, and Shikha Sahai. Entrepreneurship. Excel Book, New Delhi.
- 2. Charantimath and Poornima. Entrepreneurship Development and Small Business Enterprises. Pearson Education, New Delhi.

WEB RESOURCES

- 1. www.ediindia.org/Entrecore3dtl.asp
- 2. http://www.niesbud.nic.in/
- 3. www.udyogini.org/
- 4. www.ediindia.org/
- 5. www.micromentor.org/Business-Resources

OUESTION PAPER PATTERN

48

Time: 3 Hours

Max Marks: 50

Section A- Answer any 10 questions (out of 12 questions)

10X5 marks = 50 marks

10 Hours

10 Hours

10 Hours

CREDITS: 2 LTP:110